Binary descriptor-based dense line-scan stereo matching
نویسندگان
چکیده
We present a line-scan stereo system and descriptor-based dense stereo matching for highperformance vision applications. The stochastic binary local descriptor (STABLE) descriptor is a local binary descriptor that builds upon the principles of compressed sensing theory. The most important properties of STABLE are the independence of the descriptor length from the matching window size and the possibility that more than one pair of pixels contributes to a single-descriptor bit. Individual descriptor bits are computed by comparing image intensities over pairs of balanced random subsets of pixels chosen from the whole described area. On a synthetic as well as real-world examples, we demonstrate that STABLE provides competitive or superior performance than other state-of-the-art local binary descriptors in the task of dense stereo matching. The real-world example is derived from line-scan binocular stereo imaging, i.e., two line-scan cameras are observing the same object line and 2-D images are generated due to relative motion. We show that STABLE performs significantly better than the census transform and local binary patterns (LBP) in all considered geometric and radiometric distortion categories to be expected in practical applications of stereo vision. Moreover, we show as well that STABLE provides comparable or better matching quality than the binary robustindependent elementary features descriptor. The low computational complexity and flexible memory footprint make STABLE well suited for most hardware architectures. We present quantitative results based on the Middlebury stereo dataset as well as illustrative results for road surface reconstruction. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.26.1.013004]
منابع مشابه
New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملBased Dense Stereo Matching using Dynamic Programming and Color
This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto-fine multiresolution strategy is used to decrease the search space ...
متن کاملFeature Based Dense Stereo Matching using Dynamic Programming and Color
This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto-fine multiresolution strategy is used to decrease the search space ...
متن کاملOptimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملImplementing an Adaptive Approach for Dense Stereo-matching
Defining pixel correspondences in stereo-pairs is a fundamental process in automated image-based 3D reconstruction. In this contribution we report on an approach for dense matching, based on local optimization. The approach represents a fusion of state-of-theart algorithms and novel considerations, which mainly involve improvements in the cost computation and aggregation processes. The matching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 26 شماره
صفحات -
تاریخ انتشار 2017